以下是一个简单的KNN手写字符识别程序,使用传统CV技术提取特征值:
```python
import cv2
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
# 加载数据集
train_data = np.load('train_data.npy')
train_labels = np.load('train_labels.npy')
test_data = np.load('test_data.npy')
test_labels = np.load('test_labels.npy')
# 提取特征值
sift = cv2.xfeatures2d.SIFT_create()
train_features = []
for img in train_data:
kp, des = sift.detectAndCompute(img, None)
train_features.append(des)
# 将特征值转换为numpy数组
train_features = np.array(train_features)
# 将特征值reshape成二维数组
train_features = train_features.reshape(train_features.shape[0], -1)
# 训练KNN模型
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(train_features, train_labels)
# 测试模型
test_features = []
for img in test_data:
kp, des = sift.detectAndCompute(img, None)
test_features.append(des)
# 将特征值转换为numpy数组
test_features = np.array(test_features)
# 将特征值reshape成二维数组
test_features = test_features.reshape(test_features.shape[0], -1)
# 预测测试数据的标签
predictions = knn.predict(test_features)
# 计算准确率
accuracy = np.mean(predictions == test_labels) * 100
print("Accuracy:", accuracy)
```
请注意,这只是一个简单的示例代码,您可能需要根据您的数据集和需求进行修改。